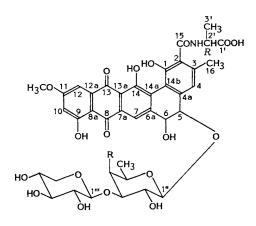
NEW ANTIFUNGAL ANTIBIOTICS, BENANOMICINS A AND B FROM AN ACTINOMYCETE


Sir:

New antifungal antibiotics, benanomicins A and B, possessing a benzo[a]naphthacene quinone skeleton have been found in the culture filtrate of *Actinomycete* sp. MH193-16F4. This strain is related to *Actinomadura*, but cannot be identified. Benanomicins A and B are active against fungi and some Gram-positive bacteria. In this communication, we report the isolation, characterization and structural elucidation of the antibiotics.

The seed culture (12 liters) of strain MH193-16F4 was transferred into a 570-liter fermentor containing 300 liters of medium (glycerol 2.0%, soybean flour (Ajinomoto) 1.5%, K₂HPO₄ 0.0025%, KH₂PO₄ 0.1125%, CoCl₂·6H₂O 0.0005%, silicon oil 0.03% and Adekanol (Asahi Denka) 0.01%, pH 7.0) and cultured at 28°C for 7 days under agitation of 300 rpm. The biological activity was determined by the paper-disc method using Saccharomyces cerevisiae F-7 as a test organism. The antibiotics in the filtrate (250 liters, pH 6.0) were adsorbed on a column of Diaion HP-20 (15 liters). After washing the column with water (100 liters) and 50% aq MeOH (45 liters), the antibiotics were eluted with 70% aq MeOH (45 liters) and then MeOH (90 liters). The biologically active eluate was cut into fractions I (53 liters), II (38 liters) and III (27 liters). Fraction I was concentrated to 3 liters and adjusted to pH 3.5 to give a precipitate (152 g) containing benanomicin A. The precipitate (150 g) was dissolved in DMF (600 ml) and kept at room temp for 3 days in a desiccator equilibrated with water vapor. The resulting dark red precipitate was filtered to give benanomicin A DMF solvate (29 g). Fraction II was treated in the same manner to afford benanomicin A DMF solvate (14 g). The solvate (1 g) was dissolved in DMSO (5 ml) and dropped slowly into MeOH (300 ml) under vigorous agitation to give pure benanomicin A (935 mg) as a dark red powder. Fraction III was concentrated to 1.5 liters and adjusted to pH 3.5 to give a precipitate (99 g) containing benanomicin B. The precipitate (1 g) was further purified by Sephadex LH-20 (1 liter) chromatography developed with DMF. The active eluate (54 ml) was concentrated to dryness to give a brownish powder (657 mg). To a MeOH solution (100 ml) of the brownish powder (300 mg) was added 1 N HCl (1 ml) and the solution was concentrated to dryness. The residue was dissolved in DMSO (3 ml) and dropped into CHCl₃ (200 ml) under agitation to give pure benanomicin B hydrochloride (258 mg) as a dark red powder.

Benanomicin A: MP >220°C, Anal calcd for $C_{s_0}H_{41}NO_{10} \cdot \frac{1}{2}CH_3OH$: C 56.23, H 5.14, N 1.66. Found: C 55.71, H 5.18, N 1.57; field desorption (FD)-MS *m/z* 827 (M⁺); UV λ_{max}^{MeOH} nm (E_{1em}^{1}) 206 (718), 230 (sh, 600), 288 (482), 302 (sh, 390), 400 (sh, 120), 476 (197); $\lambda_{max}^{HC1-MeOH}$ 207 (649), 233 (629), 298 (561), 395 (sh, 140), 457 (233); $\lambda_{max}^{NaOH-MeOH}$ 214 (1,270), 249 (637), 320 (289), 498 (287); IR (KBr) cm⁻¹ 3350, 1720, 1620, 1600, 1295, 1160, 1070, 1040. Benanomicin A is soluble in DMSO and DMF; slightly soluble in MeOH and CHCl₃; insoluble in water.

Benanomicin B hydrochloride: MP >220°C; $[\alpha]_{22}^{20}$ +360° (c 0.05, H₂O); Anal calcd for $C_{38}H_{42}N_2O_{18}$ ·HCl·H₂O: C 53.16, H 5.15, N 3.18, Cl 4.02. Found: C 53.57, H 5.58, N 3.01, Cl 3.80; secondary ion (SI)-MS m/z 827 (MH⁺); UV λ_{max}^{MeoH} nm (E⁺⁺₁) 205 (587), 233 (526), 296

Benanomicin A (1) R = OH Benanomicin B (2) R = NH₂

THE JOURNAL OF ANTIBIOTICS

Proton No.	1			2			
	δ (ppm) ^a	m	J (Hz)	δ (ppm)	m	<i>J</i> (Hz)	
1-OH	8.65 ^b	br		ND			
4 - H	7.21	br s		7.27	br s		
5-H	4.53	d	10.2	4.57	d	10.0	
6-H	4.57	br d	10.2	4.62	br d	10.0	
7-H	8.05	s		8.06	s		
9-OH	12.77	s		12.79	S		
10-H	6.86	d	2.3	6.90	đ	2.3	
11-OCH₃	3.92	s		3.94	S		
12-H	7.24	đ	2.3	7.27	d	2.3	
14-OH	13.69 ^b	br		13.81 в	br		
16-H	2.34	s		2.35	s		
1′-OH	12.47 ^b	br		ND			
2′-Н	4.43	dq	7.4, 7.0	4.44	dq	7.2, 7.0	
2'-NH	8.45	đ	7.0	8.45	d	7.0	
3'-H	1.35	d	7.4	1.36	d	7.2	
1″ -H	4.65	đ	7.8	4.75	d	7.8	
2′′-Н	3.74	br		3.65	br		
3″-Н	3.56	dd	9.8, 2.7	3.97	dd	9.8, 4.3	
4′′-H	3.63	br s		3.44	br		
5″-H	3.62	br q	6.3, <1	3.90	br q	6.6, <1	
6″-H	1.14	d	6.3	1.20	d	6.6	
1‴ - H	4.43	d	7.0	4.57	d	7.0	
2‴-Н	3.13	dd	8.6, 7.0	3.19	m		
3‴-Н	3.17	dd	8.6, 8.6	3.17	m		
4‴ - H	3.32	ddd	10.6, 8.6, 5.1	3.34	ddd	10.2, 9.0, 5.1	
5‴-H _{ax}	3.09	dd	10.6, 10.9	3.09	dd	11.3, 10.2	
$5^{\prime\prime\prime}$ - H_{eq}	3.72	dd	10.9, 5.1	3.75	dd	11.3, 5.1	

Table 1. ¹H NMR data of benanomicins A (1) and B (2).

ppm from TMS (0 ppm) in DMSO- d_6 at 40°C as the internal reference.

^b Tentative assignment.

m: Multiplicity.

ND: Not detected.

(426), 390 (sh, 100), 458 (169); $\lambda_{\text{max}}^{\text{HCI-MeOH}}$ 207 (514), 235 (530), 295 (442), 400 (sh, 114), 457 (173); $\lambda_{\text{max}}^{\text{NaOH-MeOH}}$ 214 (1,219), 247 (518), 317 (238), 496 (215); IR (KBr) cm⁻¹ 3350, 1720, 1610, 1300, 1160, 1080, 1045. Benanomicin B hydrochloride is soluble in water, MeOH, DMSO and DMF; slightly soluble in Me₂CO and CHCl₃; insoluble in *n*-hexane.

The Rf values of benanomicins A and B (1 and 2) on TLC (Merck Art. No. 5715) developed with BuOH - AcOH - pyridine - water (6:1:4:3) were 0.57 and 0.45, respectively. They showed reddish purple spots on TLC plates and positive color reactions with Mg(OAc)₂, H₂SO₄ and Na₂MoO₄ reagents. ¹H and ¹³C NMR data of 1 and 2 are shown in Tables 1 and 2, respectively.

Mild acid hydrolysis of 1 with 0.1 N HCl at

80°C for 18 hours gave an aglycone named benanomicinone (3) ($C_{28}H_{23}NO_{11}$, FD-MS m/z549 (M⁺)) and a mixture of sugars. Methanolysis of 1 with 1 N HCl - MeOH under reflux for 15 hours gave benanomicinone methyl ester (4) $(C_{29}H_{25}NO_{11}, FD-MS m/z 563 (M^+))$ and a mixture of methyl glycosides. The mixture was separated into methyl α -D-fucopyranoside ($[\alpha]_{D}^{22}$ +187°, c 0.57, H₂O)¹⁾ and methyl α -D-xylopyranoside $([\alpha]_{D}^{22} + 145^{\circ}, c \ 0.54, H_{2}O)^{2})$ by preparative TLC of their triacetates followed by deacetylation with alkaline MeOH. Vigorous acid hydrolysis of 1 with a mixture of concd HCl and AcOH (1:1) at 110°C for 15 hours afforded a partially racemized D-alanine ($[\alpha]_{D}^{22} - 8.2^{\circ}, c \ 0.11,$ 1 N HCl). Structures of 3 and 4 were determined by ¹H-¹³C shift correlation spectroscopy (¹H-¹³C COSY), long range 1H-13C COSY and long

Carbon No.	1 δ (ppm)ª	m	2 δ (ppm)	3 δ (ppm)	4 δ (ppm)	5 δ (ppm)	6 δ (ppm)
C-1	151.1	s	151.0	150.8	150.7	150.9	150.8
C-2	127.5	s	127.5	127.0	127.1	127.4	127.4
C-3	137.4	s	137.3	137.4	137.4	137.2	137.2
C-4°	118.6	d	118.9	117.5	117.5	118.8	118.9
C-4a	138.1ъ	s	137.8 ^b	140.9 ^b	141.1 ^b	137.9 ^b	138.Ob
C-5°	81.7	d	81.0	71.3	71.3	81.1	81.1
C-6°	71.9	d	71.5	72.3	72.3	71.5	71.5
C-6a	147.7 ^b	s	148.0 ^b	149.9 ^b	150.0 ^b	147.9 ^b	148.Ob
C-7°	115.4	d	115.9	115.6	115.6	115.5	115.7
C-7a	131.3	s	131.2	131.1	131.0	131.2	131.2
C-8	184.9	s	184.9	184.9	184.8	184.9	184.9
C-8a	110.0	s	110.0	109.9	109.8	110.0	110.0
C-9	164.7	s	164.7	164.6	164.7	164.7	164.6
C-10	106.8	d	106.8	106.8	106.8	106.8	106.8
C-11	165.9	s	165.9	165.8	165.8	165.9	165.9
11-OCH ₃	56.3	q	56.3	56.3	56.3	56.4	56.4
C-12	107.5	d	107.6	107.4	107.4	107.5	107.5
C-12a	134.2	s	134.2	134.1	133.9	134.2	134.2
C-13	187.3	s	187.4	187.3	187.3	187.4	187.4
C-13a	115.5	s	115.5	115.2	115.1	115.5	115.5
C-14	156.8	s	156.8	156.5	156.5	156.8	156.7
C-14a	125.6	s	125.7	125.8	125.7	125.7	125.6

113.7

166.9

19.1

173.9

47.6

16.9

104.1

69.8

77.4

54.2

67.0

16.3

104.4

73.3

75.9

69.4

65.7

113.6

167.1

19.1

173.9

47.6

16.8

113.7

167.4

19.1

173.0

51.8

47.8

16.7

113.6

166.8

19.1

173.8

47.6

16.8

104.6

70.5

69.8

54.6

67.1

16.3

113.7

166.9

18.9

172.8

51.6

47.6

16.6

104.7

70.5

69.9

54.6

67.1

16.4

Table 2. ¹³C NMR data of benanomicins A (1) and B (2) and their derivatives (3, 4, 5 and 6).

113.7

166.9

19.1

173.9

47.6

16.9

104.4

70.1

83.0

70.3

70.1

16.3

105.2

73.6

76.0

69.4

65.6

s

S

q

\$

q

đ

q

d

d

d

đ

d

q

d

đ

d

d

t

^a ppm from TMS (0 ppm) in DMSO- d_{θ} at 40°C as the internal reference.

^b Exchangeable within each column.

e Broad signal.

C-14b

C-15

C-16

C-1'

C-2′

C-3'

C-1"

C-2″

C-3″

C-4''

C-5''

C-6"

C-1""

C-2'''

C-3'''

C-4'''

C-5'''

1'-OCH₃

m: Multiplicity.

range selective proton decoupling (LSPD) experiments. The assignments of all carbon signals of 3 and 4 are shown in Table 2.

The ${}^{3}J_{\text{HH}}$ coupling constants of the anomeric protons 1"-H (7.8 Hz) and 1"'-H (7.0 Hz) in 1 H NMR spectrum of 1 demonstrated the modes of sugar linkages as both β . By NMR studies

mentioned above and nuclear Overhauser effects (NOE's) between 1"-H and 5-H, 1"-H and 3"-H, 4-H and 5-H, and 6-H and 7-H in the ¹H-¹H NOE correlation spectrum of 1, the positions of glycosidic linkages of D-fucopyranose and D-xylopyranose were determined at C-5 and C-3", respectively.

T (MIC (µg/ml)			
Test organisms	1	2		
Candida tropicalis F-1	25	>100		
C. pseudotropicalis F-2	6.25	6.25		
C. albicans 3147	25	25		
Candida Yu-1200	12.5	12.5		
C. krusei F-5	6.25	6.25		
Saccharomyces cerevisiae F-7	6.25	12.5		
Cryptococcus neoformans F-10	3.13	1.56		
Cochliobolus miyabeanus	> 100	> 100		
Pyricularia oryzae	25	50		
Pellicularia sasakii	25	50		
Xanthomonas citri	>100	> 100		
X. oryzae	>100	>100		
Aspergillus niger	50	> 100		
Trichophyton asteroides 429	50	25		
T. mentagrophytes F-15	50	25		

Table 3. Antifungal activities of benanomicins A (1) and B (2).

Treatment of 2 with 6 N HCl at 110°C for 12 hours afforded 3, dexylosylbenanomicin B (5) $(C_{34}H_{34}N_2O_{14}, \text{ FD-MS } m/z \text{ 696 } (M+2)^+), \text{ de-}$ alanylbenanomicinone ($C_{25}H_{18}O_{10}$, FD-MS m/z478 (M⁺)) and D-alanine ($[\alpha]_{D}^{25}$ -12°, c 0.2, 1 N HCl). Methanolysis of 2 with 1 N HCl - MeOH under reflux for 14 hours gave 4, dexylosylbenanomicin B methyl ester (6) $(C_{35}H_{36}N_2O_{14})$ FD-MS m/z 708 (M⁺)) and an anomeric mixture of methyl D-xylopyranosides which gave methyl 2,3,4-tri-O-acetyl- α -D-xylopyranoside($[\alpha]_{\rm D}^{22}$ +124°, c 1.0, CHCl₃)²⁾ and its β -anomer ((α]²²_D -55° , c 0.69, CHCl₃)²⁾ by acetylation followed by preparative TLC. Moreover, acid hydrolysis of 2 with 70% aq TFA at 90°C for 12 hours afforded thomosamine³⁾ in a low yield together with 3 and 5. Treatment of thomosamine with 5% HCl - MeOH followed by acetylation with acetic anhydride in pyridine gave methyl 4-acetamide-2,3-di-O-acetyl-4-deoxy-α-D-fucopyranoside ($[\alpha]_{D}^{22}$ +78°, c 0.11, CHCl₃). The modes and positions of sugar linkages of 2 were determined by NMR studies to be the same as those of 1.

The structures of benanomicins A and B are shown as 1 and 2, respectively. The stereochemistry at C-5 and C-6 remains undefined.

Benanomicins A and B showed antifungal activities as shown in Table 3 and limited antibacterial activities against *Micrococcus luteus* FDA 16 (12.5 and 3.13 μ g/ml) and *Corynebacterium bovis* 1810 (12.5 and 3.13 μ g/ml). When tested in mice by intravenous injection, no acute toxicities of benanomicins A and B were observed at 600 mg/kg and 100 mg/kg, respectively. More details of the biological properties will be reported in due course.

Acknowledgment

The authors are grateful to the members of the Pharmaceutical Development Laboratories, Meiji Seika Kaisha, Ltd. for their collaboration in the production of the benanomicins.

> Tomio Takeuchi Takeshi Hara Hiroshi Naganawa Mayumi Okada Masa Hamada Hamao Umezawa[†]

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

> Shuichi Gomi Masaji Sezaki Shinichi Kondo*

Pharmaceutical Research Laboratories, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222, Japan

(Received November 21, 1987)

[†] Deceased.

References

- BUCKINGHAM, J.: Dictionary of Organic Compounds. Ed., J. BUCKINGHAM, p. 3859, Chapman & Hall Ltd., London, 1982
- 2) BUCKINGHAM, J.: Dictionary of Organic Compounds. Ed., J. BUCKINGHAM, p. 4088, Chapman

& Hall Ltd., London, 1982

3) STEVENS, C. L.; P. BLUMBERGS, D. H. OTTERBACH, J. L. STROMINGER, M. MATSUHASHI & D. N. DIETZLER: Synthesis of 4-amino-4,6-dideoxy-Dgalactose and identification with the 4-amino-4,6-dideoxyhexose from *Escherichia coli* strain Y-10. J. Am. Chem. Soc. 86: 2937~2938, 1964